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Abstract

This technical note describes a utilization, in an adaptive

reduced-source approach, of a Monte Carlo transport solution for the

one-speed �nite slab problem in [x; �] geometry.[1] Although a solution

for the underlying problem has been available to arbitrary precision for

some time, the purpose here is to demonstrate how the convergence

a�orded by traditional (non-adaptive) Monte Carlo can be improved

signi�cantly, without compromising its precision. It is demonstrated

that the reduced-source Monte Carlo technique obtains multiple

orders-of-magnitude improvement over traditional Monte Carlo

convergence, for the two-dimensional transport problem treated. The

goal is that ongoing research will obtain exponential convergence for

practical applications that are not tractable with methodology

currently available.

1. Introduction

The purpose of the e�ort documented herein is to demonstrate the possibility of far

exceeding the convergence e�ciency a�orded by traditional (i.e., non-adaptive) Monte Carlo.

The reported �ndings demonstrate exponential convergence for a transport solution of a

two-dimensional problem, speci�cally, the one-speed homogeneous slab with isotropic

scattering and boundary sources. It is common knowledge that a solution to such a problem

has been available to arbitrary precision for some time. The interest here, however, is not to

o�er an alternative solution technique for this problem, per se, but to exploit the convenience

of a known solution, together with the availability of a recently published Monte Carlo

approach for it,[1] in order to demonstrate the vast potential of adaptive Monte Carlo

through the reduced-source method.
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The goal is that ongoing research will enable the extension of adaptive Monte Carlo

techniques to the point where practical applications, for which su�ciently dextrous

methodology is currently unavailable, can be tackled e�ciently. The present �ndings are part

of ongoing, inter-division research at Los Alamos National Laboratory,[2] which has the

ambition of advancing the applicability of adaptive Monte Carlo techniques. My current

�ndings derive from an adaptation of an aforementioned work,[1] using it as the kernel within

a reduced-source approach, whence derives the exponential convergence to the exact solution.

The exponential convergence in the present results is shown to exceed by as much as ten

orders of magnitude the convergence e�ected by the inverse root of computing time of

non-adaptive Monte Carlo.

2. Preliminaries

In order to focus attention on that which is new in the present technical note, the starting

point for this research is presented in this section with a minimum of discussion. That is,

Equations 1{10, below, are presented for convenience, but are neither derived nor discussed

herein, except for some basic de�nitions of terms.

Case's method,[3] following the notation in Bell and Glasstone,[4] gives the analytic form of

the transport solution to the one-speed �nite slab problem (with isotropic scattering) in [x; �]

geometry, viz.

�(x; �) = a+ 
+
0 (�)e

�x=�0 + a� 
�
0 (�)e

x=�0 +
Z 1

�1
A(�) �(�)e

�x=�d� (1)

where x is the position (measured along the slab normal); � is the direction cosine with

respect to the x-axis; and �(x; �) is the angular 
ux.

The ��0 are the discrete eigenvalues of the associated eigenfunctions

 �0 (�) =
c

2

�0

�0 � �
(2)

with �0 being the positive root of

1 = c�0tanh
�1 1

�0
�
c�0

2
ln
�0 + 1

�0 � 1
(3)

The � are in the continuum of eigenvalues, corresponding to the eigenfunction continuum

 �(�) =
c

2
P

�

� � �
+ �(�)�(� � �) (4)
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with

�(�) = 1�
c�

2
ln
�1 + �

1� �

�
(5)

where c is (for non-multiplying media) the collision survival probability; P indicates that the

Cauchy principal value is to be used in any integration of a singular term; and �(x) is the

Dirac delta function. Orthogonality conditions on  �0 (�) and  �(�) lead to
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N�
0

Z 1

�1
�(0; �)� �0 (�)d� (6)
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0 =
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�30

h c

�20 � 1
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�20
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(8)

Z 1

�1
� �0(�) �(�)d� = N��(� � �0) (9)

N� = �
h
�2(�) +

�2c2

4
�2
i

(10)

Based on the foregoing, Booth [1] derived and prescribed Monte Carlo estimation for

quantities that are used to obtain the coe�cients A(�) in Equation 7. These, together with

the other computed quantities speci�ed in Equations 2{10, are used to obtain an estimate of

the 
ux speci�ed in Equation 1. Such an estimation of the angular 
ux has been adapted as

the kernel computation for the iterative approach described in the following sections.

3. The Reduced Source at the Boundary

If the slab thickness is T , then the left and right boundaries may be speci�ed as x = 0 and

x = T , or, equivalently, as x = �T and x = 0, respectively. The �rst speci�cation is

convenient for left-boundary computations; the second for right boundary computations.

Given the computed angular 
ux, �(x; �), evaluated at the slab boundaries (initially

choosing x = 0 to be the left boundary and x = T the right), the corresponding (inward

directed) boundary-source density is given by

S(�) =j � j [�(0; �)H(�) + �(T; �)H(��)] (11)
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where H(z) =
R
z

�1 �(y)dy is the Heaviside function, and �(x; �) is given by Equation 1.

If the initial computed solution of �(x; �), say �0(x; �), is equal to the exact solution for the

given problem, say �E(x; �), then S(�) will be exactly equal to the given source at the

boundary, say SE(�).

Any non-vanishing algebraic di�erence between the given source, SE(�), and the computed

source, from Equation 11, comprises the reduced source at the boundary, or boundary

residual,

S1(�) = SE(�)� S(�) (12)

S1(�), in turn, speci�es the source for the problem, whose solution, say �1(x; �), is the

di�erence between the exact solution to the original problem and the solution given by

�0(x; �), viz.

�E(x; �) = �0(x; �) + �1(x; �) (13)

It should be noted that S1(�) can, and in practice does, have both positive and negative

components. This is treated by assigning positive and negative weights, respectively, in the

Monte Carlo estimation.

Now, if �1(x; �) is not an exact solution (to the residual problem for which S1(�) is the given

source), as might be evidenced by some su�ciently large boundary residual, say S2(�), the

process can be continued for another iteration. The choice of a termination criterion, based

on a speci�ed magnitude of boundary residual, or some more appropriate metric (see

Section 7, below), is arbitrary.

In this manner, Equations 11{13 prescribe an iterative method for converging to the exact

solution of the original problem | the reduced-source method.

4. Direct Contributions to Transport Coe�cients from Boundary Residuals

The kernel for this reduced-source iteration accounts for the estimation of the transport

coe�cients, except for the direct contribution from the boundary residual of Equation 12.

That direct contribution can be computed by numerical integration, analogous to the

treatment in Reference [1].

Subscripting with L to indicate left-boundary quantities, the left-boundary 
ux due to the

left-boundary residual source density is, from Equations 11 and 12

�L(�)H(�) =
S1
L
(�)

j � j
=
SE

L
(�)

j � j
� �(0; �)H(�) (14)
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where SE

L
(�) is the given source (on the left boundary) and �(0; �) is the computed 
ux (on

the left boundary).

Substituting Equation 14 into Equation 7 we get

AL(�) =
1

N�

Z 1

�1
�L(�)H(�)� � (�)d� (15)

Using Equations 4 and 15 we get

AL(�) =
1

N�

Z 1

�1
�L(�)H(�)�

h c
2
P

�

� � �
+ �(�)�(� � �)

i
d�

=
1

N�

Z 1

0
�L(�)�

c

2
P

�

� � �
d� +

1

N�

�L(�)H(�)��(�)

= IL(�) +BL(�) (16)

where

IL(�) =
1

N�

Z 1

0
�L(�)�

c

2
P

�

� � �
d� (17)

and

BL(�) =
1

N�

�L(�)H(�)��(�) (18)

Using Equations 10 and 18 we get

BL(�) =
�L(�)H(�)��(�)

�
h
�2(�) + �2c2

4
�2
i

=
�L(�)H(�)h

�(�) + �2c2

4�(�)
�2
i (19)

From Equation 5, we see that �(�) is unbounded for � = �1; but this presents no di�culty,

since BL(�1) vanishes, as can be seen from Equation 19.
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The IL(�) of Equation 17 can be calculated, with appropriate care in the vicinity of � = �,

using the approach in Reference [1], Section VII, and also noting from Reference [1],

Section IV, that we need AL(�) only for � > 0.

Divide the interval [-1,1] into 2K equal intervals, and, for 0 � � � 1, let �i and �i be the

midpoints of the intervals

�i = �i =
(i� 1

2
)�K

K
i = K + 1;K + 2; � � � ; 2K (20)

Let

li =
i�K

K
i = K + 1;K + 2; � � � ; 2K (21)

be the endpoints of the ith interval, viz.

li�1 � � < li i = K + 1;K + 2; � � � ; 2K (22)

To evaluate IL(�) for the eigenvalues �j, assume a linear form for

�(�) =
1

2N�

�L(�)c�� (23)

in each interval. That is,

�i(�) = ai(�j � �) + ci i = K + 1;K + 2; � � � ; 2K (24)

Note that ai in Equation 24 is the slope of our linearized �i(�) in each interval. For i = K +1

and i = 2K we use a one-sided estimate of the ai, because no information about �L(�)H(�)

exists for i = K or i = 2K + 1. Elsewhere, a two-sided estimate of the slope is used.

Hence

aK+1 =
�(�K+2)� �(�K+1)

�K+1 � �K+2

= K[�(�K+1)� �(�K+2)] (25)

cK+1 = �(�K+1)� aK+1(�j � �K+1) (26)
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ai =
�(�i+1)� �(�i�1)

�i�1 � �i+1
=
K

2
[�(�i�1)� �(�i+1)] i = K + 2;K + 3; � � � ; 2K � 1 (27)

ci = �(�i)� ai(�j � �i) i = K + 2;K + 3; � � � ; 2K � 1 (28)

a2K =
�(�2K)� �(�2K�1)

�2K�1 � �2K
= K[�(�2K�1)� �(�2K)] (29)

c2K = �(�2K)� a2K(�j � �2K) (30)

Thus, in the ith interval, we get from Equation 17 and the de�nitions 20{30

I i
L
(�j) =

Z
li

li�1

ai(�j � �) + ci

�j � �
d�

=
ai

K
+ ciln

�����j � li�1

�j � li

���� (31)

And note that for the case of i = j we have

ln

�����j � li�1

�j � li

���� = ln

�����j � lj�1

�j � lj

���� = ln

����
1
2K
�1
2K

���� = ln(1) = 0 (32)

so that

I
j

L
(�j) =

aj

K
(33)

Hence, the value of IL(�) in Equation 17 can be approximated for � = �j such that

IL(�) '
2KX

i=K+1

I i
L
(�j) (34)



NS&E Draft Technical Note

LA-UR-98-5715
December 9, 1998Page 8

All the other required direct contributions are obtained in a similar fashion, yielding:

a+ '
2KX

i=K+1

ai+ (35)

where

ai+ =
Z

li

li�1

ai(�0 � �) + ci

�0 � �
d�

=
ai

K
+ ciln

�
�0 � li�1

�0 � li

�
; (36)

AR(�) '
KX
i=1

I i
R
(�j) +

�R(�)H(��)h
�(�) + �2c2

4�(�)
�2
i (37)

where

I i
R
(�j) =

Z
li

li�1

ai(�j � �) + ci

�j � �
d�

=
ai

K
+ ciln

�����j � li�1

�j � li

����; (38)

and �nally

a� '
KX
i=1

ai� (39)

where

ai� =
Z

li

li�1

ai(�0 + �) + ci

�0 + �
d�

=
ai

K
+ ciln

�
�0 + li

�0 + li�1

�
(40)

The omitted details may be found in a Los Alamos National Laboratory report.[5]
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5. Implementation of Reduced Source Algorithms into Test-bed Code

The implementation of the algorithms implied by the foregoing sections is straightforward to

describe. What is required, essentially, is:

1. an iteration loop surrounding the code kernel comprising Booth's [1] Monte Carlo

estimation (designed by him for one pass of a speci�ed number of histories);

2. the coding that computes the reduced source at the end of each iteration (see Section 3,

above);

3. coding to \group-by-sign" and sample the reduced source (which, in general, will have

both positive and negative components on both sides of the slab);

4. and, coding that computes, by numerical integration, the direct contributions to the

transport coe�cients from the reduced source (see Section 4, above).

Details of the implementation, including a test enabled by the odd-function property (with

respect to the source) of the solution, may be found in a Los Alamos National Laboratory

report.[5]

6. Demonstration of Reduced-Source Behavior

Example behavior of the boundary-source residuals is shown in Figures 1 and 2, below.

Figure 1 displays the behavior of the positive components of the boundary-source residuals;

Figure 2 displays the corresponding behavior of the negative components. As pointed out in

Section 3, above, the boundary-source residuals generally have both positive and negative

components.

Each of these �gures compares the convergence of: one run that used 1000 bins for the

numerical integrations over the eigenvalues � (see Equation 1), and the same number for

sampling the direction cosines � from the reduced sources (see Equation 12); and, one run

that used twice as many bins. In addition, a plot of a traditional inverse-root convergence

rate is displayed for illustration. And, to highlight the comparison between the `1000-bin'

result and the `2000-bin' result, the 1000-bin result is additionally shown scaled down to

match the 2000-bin result at the third iteration. This serves to demonstrate that the

convergence rate toward a zero boundary-source residual is constrained by the precision of

the numerical computation. It is important to point out that central processing unit (CPU)

time per iteration is roughly constant in a given run, but the magnitude of the constant, of

course, depends on the precision of the numerical integration and source-sampling tables (as

speci�ed by the re�nement of the binning).
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7. Metric for Gauging Convergence of the Angular Flux Solutions

Although the boundary-source residuals appear to converge to zero (see Figures 1 and 2), it

was seen upon re
ection, that they need not converge to zero (let alone at a rapid rate), in

order for the 
ux solution to converge toward the exact solution. This may be clari�ed by

considering the consequences of the following behavior for the boundary-source residuals:

Suppose the boundary-source residuals were characterized by an increase, per

iteration, in the 
uctuation frequency (about zero) of a non-vanishing amplitude,

as a function of angle cosine.

It seems plausible that the net 
ux e�ected by such a non-vanishing boundary-source

residual would tend to zero, by the cancellation e�ect of neighboring positive and negative

source components. Hence, another computed quantity was needed as an appropriate metric

with which to analyze convergence rates for the 
ux solutions of the reduced-source method.

In order to have the computed angular 
uxes converge to the exact solutions, some aspect of

a reduced-source iteration would have to become vanishingly small. Clearly, if the computed


uxes were the exact solutions, any subsequent iteration would be based on a

boundary-source residual that was e�ectively zero (refer to Equation 12 and to the

gedankenexperiment, above). Such a residual source would, necessarily, e�ect a vanishingly

small residual scalar 
ux at the boundary. Hence, the residual scalar 
ux is a reasonable

candidate for gauging the convergence of the angular 
ux solutions by the reduced-source

method.

8. Anticipated Convergence Rates

The reduced-source method is expected to produce a rate of convergence (to the exact

solution) substantially greater than that o�ered by the traditional Monte Carlo transport

method.[7] Traditional Monte Carlo exhibits the � 1p
N
(i.e., inverse root) rate, where N is

the number of histories sampled (or, equivalently, a number of CPU-time units). The

reduced-source method is believed to o�er exponential rates of convergence: � (constant)�N ,

where, again, N has the dimension of some measure of computing time, as, for example, an

iteration of the reduced-source method (given that each iteration takes roughly an equal

amount of computing time for a speci�c problem). Such a rate of convergence would manifest

itself graphically as a straight line, with negative slope, for a semilogarithmic plot of

convergence metric as a function of iteration.
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9. Convergence of the Residual Scalar Flux

Figures 3 and 4 demonstrate how the magnitude of the residual scalar 
ux converges as a

function of iteration number. The residual scalar 
ux is obtained by numerical integration of

the residual angular 
ux; and the magnitude is plotted, because the source residuals

comprise, in general, both positive and negative components (thereby yielding both positive

and negative 
ux residuals).

Figure 3 displays the behavior of the scalar 
ux residuals for the 5 thicknesses speci�ed in its

corresponding �gure caption (see the section FIGURE CAPTIONS, below) on the left

boundary of the slabs (i.e., at the given source plane of incidence, x = 0). Figure 4 displays

the corresponding behavior on the right boundary (at x = T ). Both �gures (for all 5

thicknesses) display two basic slopes: a steep slope for the �rst few iterations, followed by a

shallower slope for later iterations.

In trying to understand this prominent feature of both �gures, it was speculated [6] that the

observed separation (between early and late iterations) of relatively `fast' and `slow'

convergence rate was somehow e�ected by the two distinct natures of the components of the

solutions (see Equation 1): the presumed dominance over the residual source, in the early

iterations, of the asymptotic solutions (discrete eigenfunction components), and the later

dominance of the transient solution (given by the integral over the continuum of

eigenfunctions). Though seemingly a plausible conjecture, this was demonstrated by

subsequent calculations (discussed below) to be o� the mark.

Figure 5 demonstrates how the residual scalar 
ux converges both at the slab boundaries and

at the midpoint of the slab. Here the slab thickness was taken to be 40 mfp and the given

source at x = 0 was speci�ed as before: S(0; �) = �e��
2

. The observed convergence behavior

of the plotted residual-
ux metric as a function of iteration number is similar to that

observed in Figures 3 and 4.

Since Figure 5 merely supports the observations from Figures 3 and 4, it is opportune, at this

point, to remark upon the displayed convergence rate for the residuals, as compared to the

familiar inverse-root rate, which is included for illustration. The inverse-root convergence

illustration is seen to diminish by a factor of 5 in 25 iterations (by de�nition). This compares

with the following decreases for the reduced-source metrics: more than 11 orders of

magnitude at x = 0; and more than 10 orders of magnitude both at x = 20 and at x = 40.

10. E�ciency of Calculations

Exponential convergence, as described in the preceding section, is clearly desirable. But it is

useful to examine how these convergence rates translate into traditional e�ciency metrics.
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I proceeded to calculate the problem de�ned as follows: a 1-mfp-thick slab in [x; �] geometry,

having a given source at x = 0, viz.

S(0; �) = � � > 0 (41)

for which the analytic (inward-directed) boundary angular 
ux is:

�(0; �) = 1 � > 0 (42)

I timed the calculation and found that 106 histories took about 5 times as long as

100 histories. This may be surprising to those accustomed to traditional Monte Carlo

transport, but the random walk in the test-bed code is a very small part of the CPU time per

iteration. Most of the computing involves numerical integrations over the eigenvalues � for

the continuum of Case eigenfunctions (see, for example, Equation 1, above).

I then compared 1 iteration of 106 histories with 5 iterations of 100 histories/iteration. I also

compared 3 iterations of 106 histories/iteration with 15 iterations of 100 histories/iteration.

In so doing, I approximately equalized the total CPU time for the corresponding cases to be

compared. Note, however, that the 106 histories exceeded the �CPU-equivalent 500 histories

by a factor of 2 � 103.

TABLE I

Comparison of 1 Iteration (106 histories)

with 5 Iterations (102 histories/iteration)

(computed 
ux shown is for �-bin having maximum deviation from 1)

#iter hist/iter CPU (sec) 
ux deviation (deviation)2 rel FOM

1 106 184 1.0264 2:64 � 10�2 6:97� 10�4 1

5 102 179 1.000338 3:38 � 10�4 1:14� 10�7 6285

TABLE II

Comparison of 3 Iterations (106 histories/iteration)

with 15 Iterations (102 histories/iteration)

(computed 
ux shown is for �-bin having maximum deviation from 1)

#iter hist/iter CPU (sec) 
ux deviation (deviation)2 rel FOM

3 106 554 1.00153 1:53 � 10�3 2:34� 10�6 1

15 102 535 1.0000135 1:35 � 10�5 1:82 � 10�10 13314
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As part of the problem de�nition, I speci�ed 1000 equal �-bins for the range �1 � � � 1.

And in Tables I and II above, the computed inward-directed angular 
ux quoted is for the

bin value that deviated most from the known analytic value 1. The �gure of merit (FOM) is

computed as ((deviation)2� CPU)�1 and is normalized to the smaller value of the two

corresponding cases. A comparison of the relative FOM values is another indication that the

relative improvement in e�ciency provided by the reduced-source method involves multiple

orders of magnitude.

11. Analysis of Convergence Rates for Flux Components

In order to investigate the conjecture concerning the two distinct rates of convergence

evidenced in Figures 3{5 (see Section 9, above), I analyzed the three separable contributions

to the angular 
ux: the two components comprising the asymptotic portion (as denoted by

their associated coe�cients a�), and the transient component (denoted by the coe�cients

A(�) of the eigenfunction continuum). The surprising result, which contradicts the

conjecture, was that each of these components of the angular 
ux demonstrates a two-stage

convergence: a relatively steep slope for the �rst few iterations, followed by a shallower slope

for the remaining iterations. This is evidenced at both sides of the slab, as well as in the

middle of the slab (see Figures 6{8, below).

When I showed these results to a colleague,[8] however, he recognized this pattern from his

own realm of expertise. His speci�c remarks are in the Appendix.

Note that I have modi�ed slightly the convergence metric. In Figures 6{8, I have plotted the

magnitude of the relative residual scalar 
ux (i.e., the residual scalar 
ux normalized to the

�nal total computed scalar 
ux). This modi�cation provides a direct visual indication for the

precision of the calculation.

12. Analysis of the Flux Calculation Results

In the preceding sections, I have concentrated on the e�ciency of the reduced-source

calculations. In this section, I present evidence that the calculations are producing correct

results.

Figure 9 presents the computed angular 
ux at three x-positions of the slab de�ned for the

following calculations: x = 0; 1
2
; 1. The slab thickness is 1 mfp, and its `material'

speci�cations are as before: c = 0:5 (collision survival probability); analog capture; and

isotropic scattering. The prescribed source at the plane of incidence (x = 0) is: S(0; �) = �

for � > 0.
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Several prominent features of the plots in Figure 9 are reassuring. At x = 0, the 
ux for the

inward-directed angles (� > 0) is virtually identically 1.0 (refer to Tables I and II, in

Section 10 above), which is the analytic value. Similarly, at x = 1, the 
ux for the backward

angles (� < 0) is virtually identically 0.0, which is also the analytic value. We note the

expected discontinuities for � = 0 at both faces of the slab (x = 0 and x = 1), and the

variation of the 
ux at the midpoint of the slab has characteristics one might expect from

those that characterize the boundary values.

Aside from the agreement at the boundaries, as noted above, I was fortunate to get an

independent benchmark for the slab interior, from Jerome Spanier [9] and Rong Kong.[10]

Table III, below, compares our results. Mine were computed using the reduced-source

method for 20 iterations. Spanier and Kong used an independent approach, being developed

at the Claremont Graduate University.[9, 10]

TABLE III

Comparison of Reduced-Source Results and

Results of Calculations at Claremont

Angular 
ux computed at x = 0:5 mfp

Method � �(0:5; �)

Reduced Source 0.4995 0.4795008

\Claremont" 0.4995 0.4795063

Reduced Source 0.5005 0.4801207

\Claremont" 0.5005 0.4801261

The agreement, between the two independent calculational methods, to approximately

5 parts in 1
2
million is very reassuring.

13. Summary

The reduced-source calculational approach for Monte Carlo transport in [x,�] geometry has

been demonstrated to produce highly e�cient computational results. The e�ciency in sample

calculations was seen to exceed traditional �gures-of-merit by multiple orders of magnitude.

The speci�c choice of sample problem was based on its two-dimensional character and the

availability of a Monte Carlo technique for the kernel computation. These circumstances

allowed the formulation of the present reduced-source investigation, whose aim was to

demonstrate the far superior computing e�ciency that obtains from such a formulation of an

adaptive Monte Carlo technique.
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The purpose here was not merely to o�er an alternative solution to a problem that was

solved a long time ago. Rather, this successful demonstration of exponential convergence for

the sample problem comprises one milestone in an ongoing research e�ort at Los Alamos.

The goal of the ongoing research is the advancement of adaptive Monte Carlo techniques so

that applications, which are intractable with currently available methodology, will become

practical. Convergence to the exact solution for the angular 
ux, concurrent with the

convergence of the residual metric to zero, was seen to exhibit exponential rates,

characterized by (constant)�N rather than the traditional Monte Carlo constantp
N

, where N

represents an appropriate unit of computing e�ort. An example of the latter is one iteration

of a multi-iteration calculation (provided that each iteration takes approximately the same

amount of computing time). The convergence metric used in these analyses was based on the

magnitude of the residual scalar 
ux.
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Appendix

Morel's Remarks Concerning Distinct Convergence Rates

Evidenced by Boundary-Source Residual Calculations [8]

With reference to convergence characteristics observed and discussed in Section 11 of the

main text, this type of convergence is reminiscent of the convergence of standard iterative

schemes for solving linear systems of equations. Such iteration processes are analyzed in

terms of the attenuation of errors by the iteration matrix. In particular, at the beginning of

each iteration, the error is de�ned to be the current solution iterate subtracted from the

exact solution. In many instances, this error can be expanded in terms of the eigenvectors of

the iteration matrix. For instance, let the error after iteration m be given by:

~Em =
NX
n=1

an~en (A1)

where ~en is the n-th eigenvector of the iteration matrix, and an is its associated expansion

coe�cient. Each iteration is the functional equivalent of multiplying the error by the

iteration matrix. Thus the error after iteration step m+ 1 is

~Em+1 =
NX
n=1

an�n~en (A2)

where �n is the eigenvalue associated with ~en. Every convergent iteration matrix has

eigenvalues with magnitudes less than unity. Thus, as the iterations proceed, each

eigenvector component of the error converges exponentially to zero at a rate proportional to

the inverse of the magnitude of its associated eigenvalue. The actual convergence rate that

one observes for the error as a whole can initially re
ect the convergence rates of the most

quickly converging eigenvectors, if these are dominant in the initial expansion of the error.

But after a su�cient number of iterations, only the most slowly convergent eigenvector (or

eigenvectors) will persist (all the others will have been attenuated to insigni�cance), and that

slowest convergence rate will, thereafter, be observed for the error as a whole.

The use of residual equations plays a major role in the analysis of iteration methods for

linear systems. This together with much empirical evidence suggests that there may be a

deep connection between such iteration techniques and the boundary-source residual Monte

Carlo technique.
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FIGURE CAPTIONS

Figure 1. Decrease of (positive) reduced-source weight, as a function of iteration number,

for a slab of thickness 2 [x-units]. The initial (incident) source density was of the form

S(�) = �e��
2

. Each iteration comprised 50 histories, and, for each of the runs (i.e., using

1000 bins and 2000 bins) individually, the CPU-time per iteration was essentially constant.

The plots compare how the re�nement of the numerical computations a�ect the rate of

decrease, and include a plot of constantp
iteration

for illustration.

Figure 2. Decrease of (negative) reduced-source weight, as a function of iteration number,

for a slab of thickness 2 [x-units]. The initial (incident) source density was of the form

S(�) = �e��
2

. Each iteration comprised 50 histories, and, for each of the runs (i.e., using

1000 bins and 2000 bins) individually, the CPU-time per iteration was essentially constant.

The plots compare how the re�nement of the numerical computations a�ect the rate of

decrease, and include a plot of constantp
iteration

for illustration.

Figure 3. Convergence behavior of the magnitude of the residual scalar 
ux (integral of the

residual angular 
ux) on the left boundary of a slab in [x; �] geometry. The slab's `material'

speci�cations were: c=0.5 (collision survival probability); analog capture; and isotropic

scattering. The x-dimension thickness was speci�ed in units of mean-free-path [mfp]. The

plot compares the results for 5 slab thicknesses: 0.02; 0.2; 2; 20; and 200. To improve the

visual comparisons, the results were scaled by: 1 (unscaled), 0.1, 0.01, 0.001, and 0.0001,

respectively.

Figure 4. Convergence behavior of the magnitude of the residual scalar 
ux (integral of the

residual angular 
ux) on the right boundary of a slab in [x; �] geometry. The slab's `material'

speci�cations were: c=0.5 (collision survival probability); analog capture; and isotropic

scattering. The x-dimension thickness was speci�ed in units of mean-free-path [mfp]. The

plot compares the results for 5 slab thicknesses: 0.02; 0.2; 2; 20; and 200. To improve the

visual comparisons, the results were scaled by: 1 (unscaled), 0.1, 0.01, 1, and 1, respectively.

Figure 5. Convergence behavior of the magnitude of the residual scalar 
ux (integral of the

residual angular 
ux) at the left, middle, and right of a slab in [x; �] geometry. The slab's

`material' speci�cations were: c=0.5 (collision survival probability); analog capture; and

isotropic scattering. The x-dimension thickness was 40 mfp. The incident source (at the left

plane of the slab) was S(0; �) = �e��
2

.

Figure 6. Analysis of the convergence behavior, of the magnitude of the relative-residual

scalar 
ux, for the 3 principal Case components, whose associated coe�cients are denoted as

a� and A(�) (refer to Equation 1) in the main text). The [x; �]-geometry slab's `material'

speci�cations were: c=0.5 (collision survival probability); analog capture; and isotropic

scattering. The x-dimension thickness was 20 mfp. The incident source (at the left plane of

the slab) was S(0; �) = �e��
2

. The behavior at the x = 0 plane of incidence is plotted.
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Figure 7. Analysis of the convergence behavior, of the magnitude of the relative-residual

scalar 
ux, for the 3 principal Case components, whose associated coe�cients are denoted as

a� and A(�) (refer to Equation 1) in the main text). The [x; �]-geometry slab's `material'

speci�cations were: c=0.5 (collision survival probability); analog capture; and isotropic

scattering. The x-dimension thickness was 20 mfp. The incident source (at the left plane of

the slab) was S(0; �) = �e��
2

. The behavior at the x = 10 slab middle is plotted.

Figure 8. Analysis of the convergence behavior, of the magnitude of the relative-residual

scalar 
ux, for the 3 principal Case components, whose associated coe�cients are denoted as

a� and A(�) (refer to Equation 1) in the main text). The [x; �]-geometry slab's `material'

speci�cations were: c=0.5 (collision survival probability); analog capture; and isotropic

scattering. The x-dimension thickness was 20 mfp. The incident source (at the left plane of

the slab) was S(0; �) = �e��
2

. The behavior at the x = 20 exit plane is plotted.

Figure 9. Calculation of the angular 
ux for a slab in [x; �] geometry. The slab's `material'

speci�cations were: c=0.5 (collision survival probability); analog capture; and isotropic

scattering. The x-dimension thickness was 1 mfp. The incident source (at the x = 0 plane of

the slab) was S(0; �) = �. The angular 
ux at the plane of incidence, x = 0, at the midplane,

x = 0:5, and at the exit plane, x = 1, is compared.
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.



NS&E Draft Technical Note

LA-UR-98-5715
December 9, 1998Page 24

Figure 6.
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Figure 7.
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Figure 8.
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Figure 9.
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